"Одаренности не бывает. Есть трудолюбие."

Поделиться:
12.03.2016
Как преподавателю организовать работу будущих ученых и что будет, если задавать ученикам вопросы, ответов на которые не знает никто? 
Опытом делится Павел Бибиков, учитель математики московского лицея «Вторая школа» и научный руководитель лауреата ISEF Данилы Байгушева.
Павел Бибиков
  • Павел Бибиков

О том, как воспитывать будущих ученых


Я занимаюсь с учениками на базе московского лицея «Вторая школа». Это очень индивидуальная работа, в отличие от олимпиадного движения, которое носит массовый характер. Многие олимпиадники нацелены на решение за несколько часов: они его получают, становятся победителями, но для серьезных результатов в науке такие способности не подходят. 

Когда мы имеем дело с задачей научного характера, то не можем получить мгновенного результата. Ученые трудятся годами. А в школе ученик получает стандартное домашнее задание и стремится в короткий срок найти решение. Так он привыкает к быстрым результатам. Когда такой школьник берется за научную задачу, то, в скором времени, может почувствовать непреодолимое желание просто бросить. Он не привык к неудачам (причем, именно самые сильные ребята не могут привыкнуть к неудачам). И здесь важна настоящая психологическая поддержка со стороны руководителя.

Многие олимпиадники нацелены на решение за несколько часов: они его получают, становятся победителями, но для серьезных результатов в науке такие способности не подходят.

Я стараюсь дать ученикам несколько задач сразу и, если нужно, помогаю сделать первый шаг – так поиск сразу идет веселее. Математическая задача должна быть чёткой, близкой к жизни и естественной, чтобы у школьника возник интерес найти ответ. А не фантастической: «Незнайки гуляли по луне и считали светофоры по дороге…» В обычных классах ученики решают задачи из учебника. Да, важно отработать какие-то действия, но неужели на этом все обучение заканчивается? 

На своих уроках я ставлю школьникам открытые вопросы, ответы на которые не знаю и я сам. Если вопросы возникают в ходе освоения нового материала, и оказывается, что дать ответ непросто, то дети сами пытаются это сделать. Это очень ценно, поскольку они сами начинают осваивать материал гораздо глубже.

Математическая задача должна быть реальной, а не: «Незнайки гуляли по луне и считали светофоры по дороге…»


O трудолюбивых детях и взрослых задачах


Ребята еще в юном возрасте способны делать серьёзные открытия. Мой ученик Данила Байгушев в течение нескольких лет становился победителем международного конкурса ISEF. Будучи еще школьником, он смог найти способ перевода программ с одного языка на другой с сохранением «читаемости» кода, а также решить некоторые проблемы современного олимпиадного программирования. На международном конкурсе Intel ISEF он стал не просто одним из лучших в секции «Программное обеспечение», а представил гибкую систему, позволяющую поддерживать даже эзотерические языки. Это уникальное решение в данной области.

Обычно разработка хорошего проекта занимает не менее года, как правило – даже несколько лет. Так происходит потому, что область исследований шире, чем круг вопросов, рассматриваемый школьной программой. Более того, задачи, которые ставятся перед юными исследователями, не могут быть решены в одночасье – к ним нужно регулярно возвращаться, продумывать, проговаривать. После того как получен результат, необходимо оформить решение: написать статью, публично рассказать о результатах. У выпускника, который начал работу еще в 8-9 классе, времени хватает лишь на один проект.

У выпускника, который начал работу еще в 8-9 классе, времени хватает лишь на один проект.

Одарённости нет, гениальности также не существует. Есть трудолюбие, прилежание и упорство – три важнейших качества, без которых немыслима работа математика. Ни школьнику, ни взрослому человеку не под силу совершить открытие без глубокой предварительной работы, которая требует времени, сил и терпения.


О работе над проектами


Любой проект сложен для школьника психологически: во-первых, ему предстоит создать что-то совершенно новое; во-вторых, общаться с учителем в непривычном формате. На уроках учитель определяет ход занятия, ученик делает только то, что говорит учитель. Проектная работа строится совершенно по-другому: инициатива должна исходить от ученика. 

Но дети часто стесняются – не потому что глупые и ничего не могут, а потому что школьная система их к такому не готовила. При этом, как правило, задачи придумывает учитель. Откуда они берутся конкретно у меня – я много читаю. Например, труды различных математиков, среди которых Владимир Игоревич Арнольд – его работы я советую читать всем, кто хотел бы взяться за нестандартные интересные задачи.

Любой проект сложен для школьника психологически: инициатива должна исходить от него.

Решение каждой задачи требует индивидуального подхода. Иногда, чтобы понять формулировку задачи, необходимо освоить теоретический материал – например, геометрию Лобачевского, которую не проходят в школе. Когда вопрос изучен, можно начинать думать о поиске решения. Один из способов – навести школьника на мысль, разбив весь путь на простые участки. Каждый маленький шаг школьник должен уметь делать сам. Как он будет это делать – зависит от него. После того как первый этап пройден, ребенка можно попросить поставить ключевые промежуточные цели, и идти через них к окончательному решению задачи. 

Если школьник справляется с задачей – для него это, конечно, стимул двигаться дальше. Никаких баллов не я выставляю, так как психологически исследовательский процесс и так тяжел для школьника. Балльная система в данной ситуации – скорее негативная составляющая. Стимулом для школьника будет скорее возможность выступить перед одноклассниками с некоторыми результатами, пусть и промежуточными.

Оценки в работе над проектом – плохой стимул.


О методике и материалах


Когда педагогу сложно освоить совершенно иную область науки, можно позвать на помощь другого специалиста и руководить проектом вдвоем. Но если человек не занимался научной работой самостоятельно, то ему будет крайне тяжело работать со школьником. Безусловно, материалы и методики научной работы у разных людей разные, поэтому, на мой взгляд, универсального пути нет. Каждый должен выработать его сам. Начинать можно с того, чтобы учиться видеть вопросы и представлять, как искать на них ответы и строить научное исследование.

Но если учитель не занимался научной работой самостоятельно, ему будет крайне тяжело работать со школьником.

Конкретные материалы и методические работы зависят непосредственно от направления исследования: в математике их очень много. Некоторые материалы мне приходится писать самостоятельно, потому что для школьника не написано ничего – слишком сложный стиль и терминология. У меня есть одна книга по геометрии Лобачевского, по которой я готовил свой первый выпуск, планирую написать еще что-то в области теории чисел и комбинаторики.


О пути к открытию


Среди математиков есть поговорка: не бойся куда-то идти, бойся никуда не идти. Потому что любое открытие – это действие. Некоторые думают, что математики ничего не делают – сидят, глядя в потолок, и грызут карандаши. А, спустя несколько месяцев, приходит озарение и у них рождается формула или они её во сне видят. Но озарение не приходит, если только «смотреть в потолок». Чтобы получить результат, очень важно проделать огромную работу, даже если иногда будет казаться, что вы идете в ложном направлении.

Некоторые думают, что математики ничего не делают – сидят, глядя в потолок, и грызут карандаши. А, спустя несколько месяцев, видят формулу во сне.

Дневники проектов представляют собой некий конспект или лабораторную тетрадь, которая фиксирует промежуточные действия, шаги, достижения исследователя. На конкурсе ISEF все физики и химики должны обязательно вести такие тетради, но на математику это не распространяется. 

Возможно, для школьника или научного руководителя – это очень полезный прием – фиксировать вехи и достижения, отмечать результаты и планы на будущее. Ведь школьники, конечно, кое-что забывают… А вообще, я, пожалуй, соглашусь с математиком, сказавшим, что написание статей – это наказание за триумф мысли, который испытал, когда нашел решение.




Источник


Поделиться:

Короткая ссылка на новость: http://ivan4.ru/~VvOrG



Чтобы оставить комментарий, вам необходимо



Поддержать проект

Сумма: 

Способ пожертвования: